Adel Abdelhadi>, Kadri Ouahab>

Ant Colony Algorithm in Fault Diagnosis

1. Auflage.
kartoniert , 148 Seiten
ISBN 3668350043
EAN 9783668350045
Veröffentlicht Februar 2017
Verlag/Hersteller GRIN Verlag
Leseprobe öffnen

Auch erhältlich als:

pdf eBook
36,99
47,95 inkl. MwSt.
Mit click & collect abholbar: - in 4-6 Werktagen in der Buchhandlung
Lieferbar innerhalb von 3-5 Tagen (Versand mit Deutscher Post/DHL)
Teilen
Beschreibung

Fachbuch aus dem Jahr 2016 im Fachbereich Informatik - Angewandte Informatik, , Sprache: Deutsch, Abstract: In this book, we propose several modules of diagnosis for complex and dynamic systems. These modules are based on the three algorithms colony of ants, which are AntTreeStoch, Lumer & Faieta and Binary ant colony. These algorithms have been chosen for their simplicity and their vast field of application. However, these algorithms cannot be used under their basal form for the development of diagnostic modules since they have several limitations.
We have also proposed several adaptations in order that these algorithms can be used in diagnostic modules. We have proposed a parallel version of the algorithm AntTreeStoch based on a reactive multi-agents system. This version allows minimizing the influence of initial sort on the outcome of classification. We have also introduced a new parameter called Sid, which allows several ants to connect to the same position, and we have modified the movements of ants by promoting the path of the ant the most similar.
For the algorithm Lumer & Faieta, we have accelerated the speed of construction of classes by adding a speed setting different for each Ant. To reduce the number of movements, we have proposed a new variable that allows saving the identifiers of objects displaced by the same Ant. To improve the quality of classification, we have also added to the algorithm of the indices to report the classes trunks constructed. For the algorithm Binary ant colony, we have proposed a variant called "Hybrid wrapper/filter-based ACO-SVM".
This algorithm allows the selection of parameters. It combines the techniques of filters and enveloping methods in taking advantage of the rapidity of the Fisher report and the adaptation of selected settings to the classifier SVM. It improves the quality of classification according to the data nature in the database for learning and the type of the kernel function used. It also allows adjusting the hyperparameters of the kernel function. We tested these algorithms based on data from two industrial systems, which are the sintering system and the pasteurization system, as well on a few databases of UCI (University of California, Irvine).

Portrait

Ouahab Kadri received his Phd degree from the Department of Industrial Engineering, University of Batna, Algeria, in 2013. He is currently an assistant professor at the University of Khenchela, Algeria. He received his Magister degree from Department of Computer Science, University of Batna, Algeria His current research interests include evolutionary computation and artificial intelligence.

Hersteller
GRIN Verlag

-

E-Mail: info@bod.de

Das könnte Sie auch interessieren

Michael Kofler
Linux
epub eBook
Download
49,90
Paul Zenker
GenAI Security
epub eBook
Download
34,90
Dirk Becker
Einstieg in Linux Mint 22
epub eBook
Download
29,90
Thomas Pyczak
That's me!
epub eBook
Download
29,90
Download
29,90
Gernot Starke
Software-Architektur kompakt
pdf eBook
Download
8,98
Udo Brandes
Home Assistant
epub eBook
Download
39,90
Petra van Laak
Einfach klar!
epub eBook
Download
24,90
Sigrid Hess
Digital anders arbeiten
epub eBook
Download
2,99
Anne Sanders
An Liebe führt kein Weg vorbei
epub eBook
Download
10,99