Christoph Weber

Petrov-Galerkin-Finite-Elemente-Methoden zur Zeitdiskretisierung parabolischer partieller Differentialgleichungen

1. Auflage.
kartoniert , 68 Seiten
ISBN 3656830576
EAN 9783656830573
Veröffentlicht November 2014
Verlag/Hersteller GRIN Verlag
Leseprobe öffnen

Auch erhältlich als:

pdf eBook
29,99
42,95 inkl. MwSt.
Lieferbar innerhalb von 3-5 Tagen (Versand mit Deutscher Post/DHL)
Teilen
Beschreibung

Bachelorarbeit aus dem Jahr 2014 im Fachbereich Mathematik - Sonstiges, Note: 1,3, Technische Universität München (Zentrum Mathematik), Sprache: Deutsch, Abstract: Die Finite-Elemente-Methode hat ihren Ursprung in den 1950er Jahren, als Ingenieure erstmals die Methoden der Analysis mit der Variationsrechnung der Kontinuumsmechanik
kombinierten. Mitte der 1960er erschienen unabhängig voneinander mehrere Publikationen, die sich mit der Konstruktion und Analysis von Finite-Differenzen-Schemata für
elliptische Probleme mithilfe von Variationsmethoden beschäftigten. Zu nennen sind hier Céa, Demjanovic, Feng, Friedrichs und Keller und Oganesjan und Ruchovets. Aus dem Studium stetiger Approximationsfunktionen entwickelte sich schließlich die Theorie der Finiten Elemente. Allgemeines zur Mathematik der Finiten Elemente für elliptische Probleme findet sich z.B. bei Babuska und Aziz, Strang und Fix, Ciarlet sowie Brenner und Scott.
Die Entwicklung einer entsprechenden Methode für
parabolische Probleme begann um 1970, als die Finite-Differenzen-Analysis für derartige Probleme bereits weit fortgeschritten war. Diese Bachelorarbeit ist das Ergebnis meiner Independent Studies des akademischen Jahres
2014 am Lehrstuhl für Optimale Steuerung der TU München. Nach dieser kurzen Einleitung werde ich einen Einblick in die zeitliche Galerkin-Diskretisierungsmethode parabolischer
Differentialgleichungen sowie Theorie und Analysis linearer Probleme geben.
Das Hauptaugenmerk dieser Arbeit liegt allerdings auf effzienten numerischen Realisierungen des titelgebenden Verfahrens, die im Anschluss an die Theorie präsentiert werden.
Für weitergehende Fehlerabschätzungen und Stabilitätsaussagen der Galerkin-Verfahren für parabolische Probleme sei auf Thomée verwiesen.
Als Standardwerke für die mathematische Theorie elliptischer und parabolischer Differentialgleichungen möchte ich noch Evans, sowie Lions und Magenes und Friedman nennen.

Hersteller
GRIN Verlag

-

E-Mail: info@bod.de