Entdeckbarkeitstheorie. Eine Theorie über die Frage, ob mathematische Objekte von Menschenhand geschaffen sind - Daniel Janocha

Daniel Janocha

Entdeckbarkeitstheorie. Eine Theorie über die Frage, ob mathematische Objekte von Menschenhand geschaffen sind

1. Auflage. Dateigröße in KByte: 975.
pdf eBook , 20 Seiten
ISBN 3656889147
EAN 9783656889144
Veröffentlicht Februar 2015
Verlag/Hersteller GRIN Verlag

Auch erhältlich als:

Taschenbuch
17,95
13,99 inkl. MwSt.
Sofort Lieferbar (Download)
Teilen
Beschreibung

Wissenschaftlicher Aufsatz aus dem Jahr 2014 im Fachbereich Mathematik - Sonstiges, Note: 1,0, Technische Universität Darmstadt, Sprache: Deutsch, Abstract: Die Entdeckbarkeitstheorie ist eine Theorie der philosophischen Mathematik, die sich mit der Existenz derjenigen Objekte beschäftigt, mit denen Mathematik gemacht wird. In den "Grundlagen der Arithmetik" fasst Gottlob Frege kurz und prägnant den philosophischen Kerngedanken der Entdeckbarkeitstheorie zusammen: Mathematische Objekte sind nicht von Menschenhand geschaffen, sie existieren unabhängig von menschlichem Denken. Der Mensch benennt mathematische Objekte, um mit ihnen arbeiten zu können. Das Definieren ist dabei aber kein existenzschaffender Prozess, es ist lediglich eine Taufe, eine Namensgebung für bereits Existierendes.
Grundlegend für die Definition aller mathematischen Objekte ist die Definition des Begriffs Menge. Georg Cantor definierte 1895 eine Menge als "jede Zusammenfassung M von bestimmten wohlunterschiedenen Objekten m unserer Anschauung oder unseres Denkens (welche die "Elemente" von M genannt werden) zu einem Ganzen." John von Neumann lieferte ein mengentheoretisches Modell zur Definition der natürlichen Zahlen, also für die elementarsten mathematischen Objekte. Die Entdeckbarkeitstheorie basiert auf von Neumanns Definition der natürlichen Zahlen und muss daher nicht auf die Peano-Axiome eingehen. Die von Neumann'sche Definition der natürlichen Zahlen motiviert das Axiomensystem der Entdeckbarkeitstheorie, aus dem die zwei Kernresultate der Entdeckbarkeitstheorie folgen:
Alle mathematischen Objekte sind entdeckbar (Entdeckbarkeitscharakteristik).
Aus entdeckbaren mathematischen Objekten können nur entdeckbare mathematische Objekte konstruiert werden (Hauptsatz der Entdeckbarkeitstheorie).
Aus der Entdeckbarkeitscharakteristik und dem Hauptsatz der Entdeckbarkeitstheorie folgt, dass der Mensch keine mathematischen Objekte schafft, sondern mit a priori existenten Objekten arbeitet. Das Ziel dieser Arbeit ist es, ausgehend von der Entdeckbarkeit der natürlichen Zahlen, die unmittelbar aus dem Axiomensystem folgt, die Entdeckbarkeitscharakteristik und den Hauptsatz der Entdeckbarkeitstheorie zu beweisen. Außerdem soll auf die philosophische Bedeutung der Entdeckbarkeitstheorie eingegangen werden.

Technik
Sie können dieses eBook zum Beispiel mit den folgenden Geräten lesen:
• tolino Reader 
Laden Sie das eBook direkt über den Reader-Shop auf dem tolino herunter oder übertragen Sie das eBook auf Ihren tolino mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions. 
• Sony Reader & andere eBook Reader 
Laden Sie das eBook direkt über den Reader-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte. 
• Tablets & Smartphones 
Möchten Sie dieses eBook auf Ihrem Smartphone oder Tablet lesen, finden Sie hier unsere kostenlose Lese-App für iPhone/iPad und Android Smartphone/Tablets. 
• PC & Mac 
Lesen Sie das eBook direkt nach dem Herunterladen mit einer kostenlosen Lesesoftware, beispielsweise Adobe Digital Editions, Sony READER FOR PC/Mac oder direkt über Ihre eBook-Bibliothek in Ihrem Konto unter „Meine eBooks“ -  „online lesen“.
 
Bitte beachten Sie, dass die Kindle-Geräte das Format nicht unterstützen und dieses eBook somit nicht auf Kindle-Geräten lesbar ist.
Hersteller
GRIN Verlag
Trappentreustraße 1

DE - 80339 München

E-Mail: support@openpublishing.com