Installieren Sie die genialokal App auf Ihrem Startbildschirm für einen schnellen Zugriff und eine komfortable Nutzung.
Tippen Sie einfach auf Teilen:
Und dann auf "Zum Home-Bildschirm [+]".
Bei genialokal.de kaufen Sie online bei Ihrer lokalen, inhabergeführten Buchhandlung!
Dominik Koch weist in seinen Studien nach, dass es mit Hilfe der k-Nächsten-Nachbarn möglich ist, die Ergebnisse anderer Klassifikationsverfahren so zu verbessern, dass sie wieder eine Konkurrenz zu dem meist dominierenden Random Forest darstellen. Das von Fix und Hodges entwickelte k-Nächste-Nachbarn-Verfahren ist eines der simpelsten und zugleich intuitivsten Klassifikationsverfahren. Nichtsdestotrotz ist es in den meisten Fällen in der Lage, ziemlich gute Klassifikationsergebnisse zu liefern. Diesen Informationsgehalt der k-Nächsten-Nachbarn kann man sich zu Nutze machen, um bereits etablierte Verfahren zu verbessern. In diesem Buch werden die Auswirkungen der k-Nächsten-Nachbarn auf den Boosting-Ansatz, Lasso und Random Forest in Bezug auf binäre Klassifikationsprobleme behandelt.
Der Inhalt n Grundlagen der k-Nächsten-Nachbarn
n Vorstellung der zu erweiternden Klassifikationsverfahren
n Benchmarking anhand von simulierten Daten
n Anwendung der modifizierten Verfahren auf reale Datensätze
Die Zielgruppen
· Dozierende und Studierende der Mathematik, insbesondere der Statistik
Der Autor
Dominik Koch absolvierte das Statistik-Studium der Ludwig-Maximilians-Universität in München als Jahrgangsbester. Seit 2013 ist er als statistischer Berater (Schwerpunkt: Automobilindustrie und Bankenbranche) tätig. Im Rahmen seiner Publikationstätigkeit arbeitet er auch weiterhin eng mit dem statistischen Institut der Ludwig-Maximilians-Universität zusammen.
Dominik Koch absolvierte das Statistik-Studium der Ludwig-Maximilians-Universität in München als Jahrgangsbester. Seit 2013 ist er als statistischer Berater (Schwerpunkt: Automobilindustrie und Bankenbranche) tätig. Im Rahmen seiner Publikationstätigkeit arbeitet er auch weiterhin eng mit dem statistischen Institut der Ludwig-Maximilians-Universität zusammen.