Emerging Technologies in Yield Optimization and Production of Biomass Feedstock

Sprache: Englisch.
kartoniert , 520 Seiten
ISBN 0443404887
EAN 9780443404887
Veröffentlicht 1. März 2026
Verlag/Hersteller Elsevier Science
242,50 inkl. MwSt.
vorbestellbar (Versand mit Deutscher Post/DHL)
Teilen
Beschreibung

Emerging Technologies in Yield Optimization and Production of Biomass Feedstock offers a comprehensive evaluation of biomass feedstock, exploring its diverse productions and the challenges of enhancing transformation efficiency in bioenergy species. The book explores the challenges of bioenergy through case studies, covering various stages: cultivation, harvesting, pre-processing, conversion, and utilization. In each stage, the book explains how to maximize efficiency in yield optimization and production of biomass feedstock using innovative solutions to ensure economic benefits and environmental sustainability. The book begins with an introduction to bioenergy as a part of sustainable energy production. It discusses the molecular farming approach, emphasizing the importance of improving transformation efficiency in bioenergy species. The book reviews species like algae, switchgrass, corn, poplars, and sugarcane, assessing their potential and stressing the need for appropriate species selection to optimize bioenergy transformation processes. It explores new methods for gene delivery, transformation, and regeneration, and their applications in modifying bioenergy species for enhanced traits. Additionally, the book covers synthetic biology tools like biosensors, genetic circuits, and pathway engineering, explaining how these tools can be used to further enhance transformation efficiency in bioenergy species.
Emerging Technologies in Yield Optimization and Production of Biomass Feedstock serves as a timely and comprehensive resource for researchers, industry professionals, and policymakers. It equips readers with the knowledge and tools needed to leverage the latest optimization processes to harness the maximum potential of bioenergy.