J. H. Wilkinson

Rundungsfehler

kartoniert , 220 Seiten
ISBN 3540045422
EAN 9783540045427
Veröffentlicht Januar 1969
Verlag/Hersteller Springer
Übersetzer Übersetzt von G. Goos

Auch erhältlich als:

pdf eBook
35,96
49,99 inkl. MwSt.
Lieferbar innerhalb von 3-5 Tagen (Versand mit Deutscher Post/DHL)
Teilen
Beschreibung

I. Grundlegende Rechenoperationen.- Digitale Rechenanlagen.- Festpunkt- und Gleitpunktrechnung.- Bezeichnungen.- Rundungsfehler bei Festpunktrechnung.- Akkumulierende Multiplikation bei Festpunktrechnung.- Rundungsfehler bei Gleitpunktrechnung.- Die Rundung bei Verwendung eines einfach langen Akkumulators.- Vergleich von Festpunkt- und Gleitpunktrechnung.- Zusammengesetzte Gleitpunktoperationen.- Verschärfung der Abschätzungen.- Summen und innere Produkte bei akkumulierender Gleitpunktrechnung.- Statistische Fehlerabschätzungen.- Blockskalierte Vektoren und Matrizen.- Grundsätzliche Beschränkungen beim Rechnen mit t-Stellen.- Schlecht konditionierte Probleme.- Konditionszahlen.- Rundungsfehler während der Rechnung.- Anmerkungen.- II. Das Rechnen Mit Polynomen.- Die Auswertung von Potenzreihen.- Festpunktdarstellung.- Gleitpunktdarstellung.- Nullstellenberechnung bei Funktionen, die durch Potenzreihen gegeben sind.- Polynome mit beliebigen Koeffizienten.- Die Kondition von Polynomen hinsichthch der Bestimmung von Nullstellen.- Einige typische Verteilungen von Nullstellen.- Lineare Verteilung von Nullstellen.- Geometrische Verteilung.- Tschebyscheff-Polynome.- Der Einfluß der Kondition der Nullsteflen von Polynomen.- Bestimmung der Nuflstellen.- Iterative Verfahren.- Der Einfluß von Rundungsfehlern beim Newtonschen Verfahren.- Einfache Beispiele.- Das Abdividieren von Nullstellen.- Die Fehler beim Abdividieren von Nullstellen.- Beispiele fiir das Abdividieren von Nuflstellen.- Das Abdividieren von Nullstellen bei schlecht konditionierten Polynomen.- Allgemeine Bemerkungen zur Iteration und zum Abdividieren.- Verbesserung mit dem ursprünglichen Polynom.- Andere iterative Verfahren.- Das Graeffe-Verfahren.- Vorwärtsuntersuchung des Graeffe-Verfahrens.- Derrelative Fehler der berechneten Koeffizienten.- Numerisches Beispiel.- Verschlechterung der Kondition.- Allgemeine Bemerkungen zur Nuflstellenberechnung bei Polynomen.- Anmerkungen.- III. Das Rechnen Mit Matrizen.- Einführung.- Vektor- und Matrizennormen.- Fehlerunter suchungen bei einfachen Matrixoperationen.- Matrixmultiplikation.- Matrixoperationen mit blockskalierender Arithmetik.- Gewöhnliche standardisierte blockskalierte Matrizen.- Orthogonalisierung von Vektoren.- Numerisches Beispiel.- Der allgemeine Fall.- Die Lösung linearer Gleichungssysteme und die Invertierung von Matrizen.- Das Runden der Elemente der Koeffizientenmatrix.- Fehleruntersuchung beim Gaußschen Eliminationsverfahren.- Die rechnerischen Gleichungen.- Abschätzungen bei Gleitpunktarithmetik.- Gaußsche Elimination mit Festpunktarithmetik.- Die Berechnung von Determinanten.- Die Auflösung eines gestaffelten Gleichungssystems bei Benutzung gewöhnlicher Gleitpunktarithmetik.- Die Genauigkeit der berechneten Lösung.- Die Lösung gestaffelter Gleichungssysteme unter Benutzung von Gleitpunktarithmetik mit akkumulierender Multiplikation.- Die Invertierung einer Dreiecksmatrix.- Die Genauigkeit der Lösung eines gestaffelten Gleichungssystems.- Die Auflösung eines beliebigen Gleichungssystems.- Die Invertierung behebiger Matrizen.- Rechts- und Linksinverse.- Numerisches Beispiel.- Bemerkungen zu diesem Beispiel.- Die Zerlegung in Dreiecksmatrizen mit dem verkürzten Gaußschen Algorithmus.- Die Zerlegung in Dreiecksmatrizen mit Spaltenpivot suche.- Positiv definite Matrizen.- Numerisches Beispiel.- Anmerkungen zur Lösung.- Die Residuen bei Gleichungsauflösung mit blockskalierender Arithmetik.- Iterative Verbesserung der Lösung.- Die praktische Durchführung des Verfahrens.- Untersuchung derpraktischen Rechenvorschrift.- Bemerkungen zur Genauigkeit der Lösung.- Die Verwendung einer Schätzung für ?A-1 Schätzung für ?.- Abschätzung der berechneten Inversen.- Die Verwendung einer genäherten Inversen zur Gleichungsauflösung.- Ein Iterations verfahren, welches die genäherte Inverse benutzt.- Numerisches Beispiel.- Die Empfindlichkeit der Eigenwerte einer Matrix.- Die Empfindlichkeit eines

Hersteller
Springer-Verlag GmbH
Tiergartenstr. 17

DE - 69121 Heidelberg

E-Mail: ProductSafety@springernature.com