Exponentialfunktionen in den Naturwissenschaften - Jannis Schmeing

Jannis Schmeing

Exponentialfunktionen in den Naturwissenschaften

Wie exakt beschreiben unsere mathematischen Modelle natürliche Vorgänge wirklich? Und warum finden wir überhaupt so viele mathematische Bezüge in der Natur wieder?. 1. Auflage. Dateigröße in KByte: 580.
pdf eBook , 18 Seiten
ISBN 3668876150
EAN 9783668876156
Veröffentlicht Februar 2019
Verlag/Hersteller GRIN Verlag

Auch erhältlich als:

Taschenbuch
13,99
12,99 inkl. MwSt.
Sofort Lieferbar (Download)
Teilen
Beschreibung

Facharbeit (Schule) aus dem Jahr 2017 im Fachbereich Mathematik - Angewandte Mathematik, Note: 1,6, , Sprache: Deutsch, Abstract: Diese Facharbeit soll einige mathematische Anwendungen in der Natur anschaulich darstellen und erläutern und darüber hinaus für die Frage sensibilisieren, ob all diese Modelle wirklich korrekt sind und die Vorgänge in der Natur exakt wiedergeben können.
Dass Mathematik uns im Alltag ständig begegnet, dürfte schon jedem Kind aufgefallen sein. Häufig sind es einfachste Dinge wie zum Beispiel die Verzinsung des Guthabens auf einem Konto oder aber das Berechnen von Rabatten beim Schlussverkauf eines Modegeschäftes, die uns immer wieder mit Teilbereichen der Mathematik konfrontieren. In dieser Facharbeit soll es aber nicht um Zinseszins oder Prozentrechnung und auch nicht um die mathematischen Vorgänge in einem Computer oder Handy gehen, sondern vielmehr soll es um mathematische Anwendungen in der Natur und den damit verbundenen Naturwissenschaften gehen. Ein besonderes Augenmerk soll hierbei auf Exponentialfunktionen und auf damit eng verwandten Modellen liegen.
Viele Vorgänge in der Natur werden durch Exponentialfunktionen modelliert. Ob bei der Barometrischen Höhenformel, beim Wachstum einer Bakterienkultur oder aber bei der Radiokarbonmethode, immer können hier vorliegende Fragen durch Exponentialfunktionen geklärt werden. Doch wer sagt denn, dass sich die Natur, die sonst immer als wild und unberechenbar bezeichnet wird, so einfach durch ein mathematisches Modell beschreiben lässt? Kann es nicht möglicherweise sein, dass wir uns von den einfachen Berechnungen durch Exponentialfunktionen verabschieden und unsere Modelle überarbeiten müssen? Um diese umfangreichen Fragen ansatzweisen beantworten zu können werde ich im ersten Teil dieser Facharbeit als Beispiel die Radiokarbonmethode erklären und untersuchen, ob deren Modellierung durch eine Exponentialfunktion überhaupt sinnvoll ist und genaue Ergebnisse liefert.
In einem zweiten Teil werde ich mich dem Goldenen Schnitt und den Fibonacci-Zahlen zuwenden, die beide in einem engen Zusammenhang mit Exponentialfunktionen stehen, und anhand zweier Beispiele erläutern wo und warum in der Natur außerdem Mathematik angewandt wird.

Technik
Sie können dieses eBook zum Beispiel mit den folgenden Geräten lesen:
• tolino Reader 
Laden Sie das eBook direkt über den Reader-Shop auf dem tolino herunter oder übertragen Sie das eBook auf Ihren tolino mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions. 
• Sony Reader & andere eBook Reader 
Laden Sie das eBook direkt über den Reader-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte. 
• Tablets & Smartphones 
Möchten Sie dieses eBook auf Ihrem Smartphone oder Tablet lesen, finden Sie hier unsere kostenlose Lese-App für iPhone/iPad und Android Smartphone/Tablets. 
• PC & Mac 
Lesen Sie das eBook direkt nach dem Herunterladen mit einer kostenlosen Lesesoftware, beispielsweise Adobe Digital Editions, Sony READER FOR PC/Mac oder direkt über Ihre eBook-Bibliothek in Ihrem Konto unter „Meine eBooks“ -  „online lesen“.
 
Bitte beachten Sie, dass die Kindle-Geräte das Format nicht unterstützen und dieses eBook somit nicht auf Kindle-Geräten lesbar ist.
Hersteller
GRIN Verlag
Trappentreustraße 1

DE - 80339 München

E-Mail: support@openpublishing.com