Urban Cegrell

Capacities in Complex Analysis

Auflage 1988.
kartoniert , 172 Seiten
ISBN 3528063351
EAN 9783528063351
Veröffentlicht Januar 1988
Verlag/Hersteller Vieweg+Teubner Verlag

Auch erhältlich als:

pdf eBook
35,96
54,99 inkl. MwSt.
Lieferbar innerhalb von 3-5 Tagen (Versand mit Deutscher Post/DHL)
Teilen
Beschreibung

The purpose of this book is to study plurisubharmonic and analytic functions in ~n using capacity theory. The case n=l has been studied for a long time and is very well understood. The theory has been generalized to mn and the results are in many cases similar to the situation in ~. However, these results are not so well adapted to complex analysis in several variables - they are more related to harmonic than plurihar­ monic functions. Capacities can be thought of as a non-linear generali­ zation of measures; capacities are set functions and many of the capacities considered here can be obtained as envelopes of measures. In the mn theory, the link between functions and capa­ cities is often the Laplace operator - the corresponding link in the ~n theory is the complex Monge-Ampere operator. This operator is non-linear (it is n-linear) while the Laplace operator is linear. This explains why the theories in mn and ~n differ considerably. For example, the sum of two harmonic functions is harmonic, but it can happen that the sum of two plurisubharmonic functions has positive Monge-Ampere mass while each of the two functions has vanishing Monge-Ampere mass. To give an example of similarities and differences, consider the following statements. Assume first that ~ is an open subset VIII of ~n and that K is a closed subset of Q. Consider the following properties that K mayor may not have.

Hersteller
Vieweg+Teubner Verlag
Abraham-Lincoln-Straße 46

DE - 65189 Wiesbaden

E-Mail: ProductSafety@springernature.com