Andreas Schurr, Reinhold Ackermann

Deep Traffic Reinforcement Learning. Steuern eines Fahrzeugs durch eine simulierte Straßenumgebung mit dichtem Verkehr

1. Auflage.
kartoniert , 40 Seiten
ISBN 3346108015
EAN 9783346108012
Veröffentlicht März 2020
Verlag/Hersteller GRIN Verlag
Leseprobe öffnen

Auch erhältlich als:

pdf eBook
15,99
17,95 inkl. MwSt.
Lieferbar innerhalb von 3-5 Tagen (Versand mit Deutscher Post/DHL)
Teilen
Beschreibung

Studienarbeit aus dem Jahr 2019 im Fachbereich Informatik - Wirtschaftsinformatik, Note: 1,7, FOM Essen, Hochschule für Oekonomie & Management gemeinnützige GmbH, Hochschulleitung Essen früher Fachhochschule, Veranstaltung: Big Data & Data Science, Sprache: Deutsch, Abstract: In den folgenden Abschnitten dieser Arbeit sollen die Themen rund um Reinforcement Learning und ein Praxisbeispiel mit Hilfe von Reinforcement Learning dargestellt werden. Das Praxisbeispiel bezieht sich auf ein simuliertes Verkehrssystem, welches mit Hilfe von Reinforcement Learning selbstständig lernt, ob und wann ein Fahrzeug eigenständig überholen soll.
-Wir stehen am Vorabend einer weiteren mobilen Revolution. In Zukunft werden autonome Fahrzeuge aktiv am Straßenverkehr teilnehmen.- (Maurer et al., 2015)
Durch die ansteigende Anzahl der Teilnehmer am Straßenverkehr wird es immer voller und enger auf den Straßen Deutschlands. Typischer Wochenbeginn - alle auf dem Weg zur Arbeit - PKWs, LKWs, Busse und an sonnigen Tagen, die Motorradfahrer. An Teilnehmern am Straßenverkehr fehlt es keines Wegs. Bei dichtem Verkehr steigt dadurch des Risikos eines Unfalls oder eines Staus. Mit autonom fahrenden Fahrzeugen wird sich in naher Zukunft einiges ändern - voraussichtlich auch zum Vorteil aller Autofahrer, wie beispielsweise das Erledigen von Aufgaben oder das Vorbereiten auf ein Kundengespräch während der Fahrt. Dem Autofahrer werden Schritt für Schritt mehr und mehr Aufgaben beim Autofahren abgenommen. Aber auch negative Folgeerscheinungen können entstehen. Beispielsweise die Abhängigkeit der Technik und das Vertrauen in das System. Um das autonome Fahren ermöglichen zu können, benötigten die Fahrzeuge viele notwendige Daten. Diese werden beispielsweise von Sensoren, Kameras oder auch Positionierungssystemen geliefert und in Echtzeit mittels Prozessoren und Kommunikationsschnittstellen anderer Fahrzeuge verarbeiten. Unter anderem ist auch die Verkehrsinfrastruktur ein bedeutender Teil des Ganzen Vorhabens. So müssen die Verkehrsinfrastruktur sowie die Kommunikationsinfrastruktur zusammen harmonieren und mit einander kollaborieren. Hierfür könnte Reinforcement Learning eine entscheidende Rolle beim autonomen Fahren übernehmen.

Hersteller
GRIN Verlag

-

E-Mail: info@bod.de

Das könnte Sie auch interessieren

Download
10,99
Stephan Scheuer
Inside KI
epub eBook
Download
13,99
Björn Rohles
Mediengestaltung
epub eBook
Download
29,90
Andrian Kreye
Der Geist aus der Maschine
epub eBook
Download
7,99
Michael Kölling
Einführung in Java mit Greenfoot
pdf eBook
Download
27,99
Michael Kofler
Coding mit KI
epub eBook
Download
39,90
Stephan Knaus
3D-Druck mit Resin
epub eBook
Download
29,99
Andreas Eschbach
Hide*Out
epub eBook
Download
7,99
Gudrun Wegener
Freiräume
epub eBook
Download
24,90
Kirsti Kristoffersen
Celebrity Gossip
epub eBook
Download
14,99