The Computational Content Analyst - Chris J. Vargo

Chris J. Vargo

The Computational Content Analyst

Using Machine Learning to Classify Media Messages. 1. Auflage. 1 schwarz-weiße Tabellen. Sprachen: Englisch
eBook (pdf), 144 Seiten
EAN 9781040227176
Veröffentlicht Dezember 2024
Verlag/Hersteller Taylor & Francis eBooks
0,00 inkl. MwSt.
Sofort Lieferbar (Download)
Teilen
Beschreibung

Most digital content, whether it be thousands of news articles or millions of social media posts, is too large for the naked eye alone. Often, the advent of immense datasets requires a more productive approach to labeling media beyond a team of researchers. This book offers practical guidance and Python code to traverse the vast expanses of data-significantly enhancing productivity without compromising scholarly integrity. We'll survey a wide array of computer-based classification approaches, focusing on easy-to-understand methodological explanations and best practices to ensure that your data is being labeled accurately and precisely. By reading this book, you should leave with an understanding of how to select the best computational content analysis methodology to your needs for the data and problem you have. This guide gives researchers the tools they need to amplify their analytical reach through the integration of content analysis with computational classification approaches, including machine learning and the latest advancements in generative artificial intelligence (AI) and large language models (LLMs). It is particularly useful for academic researchers looking to classify media data and advanced scholars in mass communications research, media studies, digital communication, political communication, and journalism. Complementing the book are online resources: datasets for practice, Python code scripts, extended exercise solutions, and practice quizzes for students, as well as test banks and essay prompts for instructors. Please visit www.routledge.com/9781032846354.

Portrait

Chris J. Vargo is an Associate Professor in the College of Media, Communication, and Information and Leeds School of Business (Courtesy) at the University of Colorado Boulder, USA. His research primarily focuses on the intersection of computational media analytics and political communication, employing computational methods to enhance understanding in these areas.

Inhaltsverzeichnis

Preface 1. Unveiling Content Analysis in the Contemporary Media Ecosystem 2. Designing a Computational Content Analysis: An Illustration from "Civic Engagement, Social Capital, and Ideological Extremity" 3. Basic Information Retrieval for Content Analysis 4. Supervised Machine Learning with BERT for Content Analysis 5. Text Classification of News Media Content Categories Using Deep Learning 6. Leveraging Generative AI for Content Analysis 7. Unveiling the Veiled: Topic Modeling as a Lens for Discovery 8. Extending Deep Learning to Image Content Analysis Appendix A: Codebook and Conceptual Definitions Appendix B: Deletion Themes

Technik

Dieses eBook wird im PDF-Format geliefert und ist mit einem Adobe Kopierschutz (DRM) versehen. Sie können dieses eBook mit allen Geräten lesen, die das PDF-Format und den Adobe Kopierschutz (DRM) unterstützen.
Zum Beispiel mit den folgenden Geräten:
• tolino Reader 
Laden Sie das eBook direkt über den Reader-Shop auf dem tolino herunter oder übertragen Sie das eBook auf Ihren tolino mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions. 
• Sony Reader & andere eBook Reader 
Laden Sie das eBook direkt über den Reader-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte mit epub- und Adobe DRM-Unterstützung. 
• Tablets & Smartphones 
Möchten Sie dieses eBook auf Ihrem Smartphone oder Tablet lesen, finden Sie hier unsere kostenlose Lese-App für iPhone/iPad und Android Smartphone/Tablets. 
• PC & Mac 
Lesen Sie das eBook direkt nach dem Herunterladen mit einer kostenlosen Lesesoftware, beispielsweise Adobe Digital Editions, Sony READER FOR PC/Mac oder direkt über Ihre eBook-Bibliothek in Ihrem Konto unter „Meine eBooks“ - „online lesen“.
Schalten Sie das eBook mit Ihrer persönlichen Adobe ID auf bis zu sechs Geräten gleichzeitig frei.
Bitte beachten Sie, dass die Kindle-Geräte das Format nicht unterstützen und dieses eBook somit nicht auf Kindle-Geräten lesbar ist.

Barrierefreiheit
Alternativbeschreibungen
Kurze Alternativtexte

Navigation
Inhaltsverzeichnis mit Links
Register mit Links
Hersteller
Libri GmbH
Europaallee 1

DE - 36244 Bad Hersfeld

E-Mail: gpsr@libri.de