Richard Johnson

Keras Deep Learning Essentials

Definitive Reference for Developers and Engineers. Sprache: Englisch.
epub eBook , 250 Seiten
EAN 6610000874613
Veröffentlicht Juni 2025
Verlag/Hersteller HiTeX Press
Familienlizenz Family Sharing
8,63 inkl. MwSt.
Sofort Lieferbar (Download)
Teilen
Beschreibung

"Keras Deep Learning Essentials"
"Keras Deep Learning Essentials" is an authoritative guide that equips practitioners, researchers, and aspiring deep learning engineers with the essential knowledge and hands-on techniques for building, optimizing, and deploying state-of-the-art neural networks using the Keras framework. Beginning with the fundamental mathematical principles behind deep learning and a survey of modern neural architectures, the book offers clear explanations of Keras's design philosophy, its seamless integration with TensorFlow, and the complete pipeline from initial prototyping to scalable production inference. With a strong emphasis on practical environment setup, the book ensures readers are well-prepared to harness advanced hardware acceleration and library dependencies for robust model development.
Each chapter delves into a core aspect of the Keras workflow, from model construction patterns utilizing the Sequential and Functional APIs to sophisticated techniques such as subclassing, transfer learning, and custom layer engineering. Readers master the intricacies of efficient data pipelines, advanced feature engineering, and data augmentation strategies, supported by real-world guidance on handling class imbalance, online data validation, and complex input modalities. Model training and optimization at scale are addressed through modern loss and metric engineering, distributed and multi-GPU strategies, and advanced debugging and profiling to ensure performance and reliability for the most demanding applications.
Beyond model development, "Keras Deep Learning Essentials" provides a comprehensive exploration of evaluation, explainability, and productionization. The book details best practices for model serialization, serving, mobile and edge deployment, and integration with MLOps pipelines, as well as crucial topics such as compliance, security, and sustainable AI. Advanced chapters discuss Keras's role in cutting-edge research areas, including reinforcement learning, graph neural networks, and federated learning, positioning readers to innovate within both research and industry environments. This essential resource concludes with timely insights into emerging trends, reproducibility, and the evolving Keras ecosystem, making it indispensable for anyone seeking to advance in the deep learning domain.

Technik
Sie können dieses eBook zum Beispiel mit den folgenden Geräten lesen:
• tolino Reader 
Laden Sie das eBook direkt über den Reader-Shop auf dem tolino herunter oder übertragen Sie das eBook auf Ihren tolino mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions. 
• Sony Reader & andere eBook Reader 
Laden Sie das eBook direkt über den Reader-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte. 
• Tablets & Smartphones 
Möchten Sie dieses eBook auf Ihrem Smartphone oder Tablet lesen, finden Sie hier unsere kostenlose Lese-App für iPhone/iPad und Android Smartphone/Tablets. 
• PC & Mac 
Lesen Sie das eBook direkt nach dem Herunterladen mit einer kostenlosen Lesesoftware, beispielsweise Adobe Digital Editions, Sony READER FOR PC/Mac oder direkt über Ihre eBook-Bibliothek in Ihrem Konto unter „Meine eBooks“ -  „online lesen“.
 
Bitte beachten Sie, dass die Kindle-Geräte das Format nicht unterstützen und dieses eBook somit nicht auf Kindle-Geräten lesbar ist.