Installieren Sie die genialokal App auf Ihrem Startbildschirm für einen schnellen Zugriff und eine komfortable Nutzung.
Tippen Sie einfach auf Teilen:
Und dann auf "Zum Home-Bildschirm [+]".
Bei genialokal.de kaufen Sie online bei Ihrer lokalen, inhabergeführten Buchhandlung!
Ihr gewünschter Artikel ist in 0 Buchhandlungen vorrätig - wählen Sie hier eine Buchhandlung in Ihrer Nähe aus:
Part one looks at delay-tolerant network architectures and platforms including DTN for satellite communications and deep-space communications, underwater networks, networks in developing countries, vehicular networks and emergency communications. Part two covers delay-tolerant network routing, including issues such as congestion control, naming, addressing and interoperability. Part three explores services and applications in delay-tolerant networks, such as web browsing, social networking and data streaming. Part four discusses enhancing the performance, reliability, privacy and security of delay-tolerant networks. Chapters cover resource sharing, simulation and modeling and testbeds.
Joel Rodrigues is a Professor in the Department of Informatics at the University of Beira Interior, as well as being a researcher at the Instituto de Telecomunica es (IT), leader of the Next Generation Networks and Applications Group (NetGNA), chair of a number of committees and editor-in-chief of the International Journal of E-Health and Medical Communications, the Recent Advances on Communications and Networking Technology Journal, and the Journal of Multimedia Information Systems.
- List of contributors - Woodhead Publishing Series in Electronic and Optical Materials - Preface - 1: An introduction to delay and disruption-tolerant networks (DTNs) - Abstract - 1.1 Introduction - 1.2 Delay-tolerant network architecture - 1.3 DTN application scenarios - 1.4 DTN routing protocols - 1.5 Conclusion - Acknowledgements - Part One: Types of delay-tolerant networks (DTNs) - 2: Delay-tolerant networks (DTNs) for satellite communications - Abstract - 2.1 Introduction - 2.2 DTN architecture - 2.3 Geosynchronous (GEO) constellations - 2.4 Low earth orbit (LEO) constellations - 2.5 Conclusion - Acknowledgements - 3: Delay-tolerant networks (DTNs) for deep-space communications - Abstract - 3.1 Introduction - 3.2 Data communications in deep space - 3.3 Networking requirements for deep-space data - 3.4 Implementing a deep-space DTN solution - 3.5 Summary - 4: Vehicular delay-tolerant networks (VDTNs) - Abstract - 4.1 Introduction - 4.2 Vehicular network applications - 4.3 Vehicular communications - 4.4 Vehicular delay-tolerant networks - 4.5 Conclusion - Acknowledgments - 5: Delay-tolerant networks (DTNs) for underwater communications - Abstract - 5.1 Introduction - 5.2 Related work - 5.3 A contemporary view of underwater delay-tolerant networks - 5.4 Future trends - 5.5 Conclusion - 6: Delay-tolerant networks (DTNs) for emergency communications - Abstract - 6.1 Introduction - 6.2 Overview of proposed DTN solutions - 6.3 Mobility models for emergency DTNs - 6.4 DistressNet - 6.5 Routing protocols for emergency DTNs - 6.6 Minimizing energy consumption in emergency DTNs - 6.7 Conclusions and future trends - Part Two: Improving the performance of delay-tolerant networks (DTNs) - 7: Assessing the Bundle Protocol (BP) and alternative approaches to data bundling in delay-tolerant networks (DTNs) - Abstract - 7.1 Introduction - 7.2 DTN architecture and Bundle Protocol implementation profiles - 7.3 Alternative approaches - 7.4 Future trends - 7.5 Sources of further information and advice - 8: Opportunistic routing in mobile ad hoc delay-tolerant networks (DTNs) - Abstract - 8.1 Introduction - 8.2 Challenges - 8.3 Overview of multiple existing opportunistic routing protocols in mobile ad hoc networks - 8.4 Combining on-demand opportunistic routing protocols - 8.5 Open research topics and future trends - 8.6 Sources of further information and advice - 9: Reliable data streaming over delay-tolerant networks (DTNs) - Abstract - 9.1 Introduction - 9.2 Challenges for streaming support in DTNs - 9.3 Using on-the-fly coding to enable robust DTN streaming - 9.4 Evaluation of existing streaming proposals over a DTN network - 9.5 Implementation discussion - 9.6 Conclusion - 10: Rapid selection and dissemination of urgent messages over delay-tolerant networks (DTNs) - Abstract - 10.1 Introduction - 10.2 One-to-many communication in resource-constrained environments - 10.3 Random Walk Gossip (RWG) - 10.4 RWG and message differentiation - 10.5 Evaluation with vehicular mobility models - 10.6 Discussion - 11: Using social network analysis (SNA) to design socially aware network solutions in delay-tolerant networks (DTNs) - Abstract - 11.1 Introduction - 11.2 Social characteristics of DTNs - 11.3 Social-based human mobility models - 11.4 Socially aware data forwarding in DTNs - 11.5 Conclusion - 12: Performance issues and design choices in delay-tolerant network (DTN) algorithms and protocols - Abstract - 12.1 Introduction - 12.2 Performance metrics - 12.3 Processing overhead - 12.4 The curse of copying - I/O performance matters - 12.5 Throughput - 12.6 Latency and queuing - 12.7 Discovery latency and energy issues - 12.8 Conclusions - 13: The quest for a killer app for delay-tolerant networks (DTNs) - Abstract - 13.1 Introduction - 13.2 The quest for a problem - 13.3 DTN as an enabling technology - 13.4 Conclusions and future trends - 13.5 Sources of further information and advice - Index