Installieren Sie die genialokal App auf Ihrem Startbildschirm für einen schnellen Zugriff und eine komfortable Nutzung.
Tippen Sie einfach auf Teilen:
Und dann auf "Zum Home-Bildschirm [+]".
Bei genialokal.de kaufen Sie online bei Ihrer lokalen, inhabergeführten Buchhandlung!
Microfabricated resonators play an essential role in a variety of applications, including mass sensing, timing reference applications, and filtering applications. Many transduction mechanisms including piezoelectric, piezoresistive, and capacitive mechanisms, have been studied to induce and detect the motion of resonators. This book is meant to introduce and suggest several technological approaches together with design considerations for performance enhancement of capacitive silicon resonators, and will be useful for those working in field of micro and nanotechnology. Features - Introduces and suggests several technological approaches together with design considerations for performance enhancement of capacitive silicon resonators - Provides information on the various fabrication technologies and design considerations that can be employed to improve the performance capacitive silicon resonator which is one of the promising options to replace the quartz crystal resonator. - Discusses several technological approaches including hermetic packaging based on the LTCC substrate, deep reactive ion etching, neutral beam etching technology, and metal-assisted chemical etching, as well as design considerations for mechanically coupled, selective vibration of high-order mode, movable electrode structures, and piezoresistive heat engines were investigated to achieve small motional resistance, low insertion loss, and high quality factor. - Focusses on a capacitive sensing method based on the measurement of the change in capacitance between a sensing electrode and the resonant body. - Reviews recent progress in performance enhancement methods for capacitive silicon resonator, which are mainly based on the works of the authors.
Nguyen Van Toan received his B.S. degree in 2006 and his M.S. degree in 2009 in physics and electronics, respectively, from University of Science, Vietnam National University, Ho Chi Minh City, Viet Nam. He received his Dr. Eng. degree from Tohoku University in 2014 for research on silicon capable of integrating LSI for application to timing devices. He is working as an assistant professor in the Department of Mechanical Engineering, Graduate School of Engineering at Tohoku University. His current research interests include capacitive silicon resonators, optical modulator devices, capacitive micromachined ultrasonic transducers, thermal electric power generators, Knudsen pump, ion transportation, and metal-assisted chemical etching. Takahito Ono is currently a Professor at Mechanical Systems Engineering, Graduate School of Engineering in Tohoku University. He was born in Hokkaido, Japan on 12 July 1967. He received the B.S. degree in physic from Hirosaki University, Japan, in 1990 and the M.S. degree in physics from Tohoku University, Japan. He received the Dr.Eng. degree in mechatronics and precision engineering from Tohoku University in 1996. During 1996-2001, he has been a Research Associate, and Lecturer in the Department of Mechatronics and Precision Engineering, Tohoku University. He had studied about nanomachining, scanning probe and its related technologies including high density storage devices. During 2001-2009, he has been an Associate Professor, and have developed nanomechanics and nanomechanical sensors. Since 2009, he is the Professor of Tohoku University. His expertise is in the area of microelectromechnical systems (MEMSs), nanoelectromechanical systems (NEMSs), silicon based nanofabrication, ultrasensitive sensing based on NEMSs/MEMSs. Also during 2012-2014 he was director of Micro/Nanomachining Research and Education Center, Tohoku University. Since 2010 he serves a co-director of "Microsystem Integration Center (µSiC), Tohoku University. Since 2013, he has additional post, a Professor of Guest Courses, Mechanical Departments, The University of Tokyo, and working on Nanomechanics.
Preface. Acknowledgements. About the Authors. 1. Introduction. 2. Capacitive Silicon Resonator Structures. 3. Fabrication Techniques for Capacitive Silicon Resonators. 4. Hermetically Packaged Capacitive Silicon Resonators on LTCC Substrate. 5. A Long Bar Type Capacitive Silicon Resonators with High-Quality Factors. 6. Capacitive Silicon Resonators Using Neutral Beam Etching Technology. 7. Capacitive Silicon Resonators with Narrow Gaps Formed by Metal-Assisted Chemical Etching. 8. Mechanically Coupled Capacitive Nanomechanical Silicon Resonators. 9. Capacitive Silicon Nanomechanical Resonators with Selective Vibration of High-Order Mode. 10. Capacitive Silicon Resonators with Movable Electrode. 11. Capacitive Silicon Resonators with Piezoresistive Heat. References. Conclusions
Dieses eBook wird im PDF-Format geliefert und ist mit einem Adobe Kopierschutz (DRM) versehen. Sie können dieses eBook mit allen Geräten lesen, die das PDF-Format und den Adobe Kopierschutz (DRM) unterstützen.
Zum Beispiel mit den folgenden Geräten:
• tolino Reader
Laden Sie das eBook direkt über den Reader-Shop auf dem tolino herunter oder übertragen Sie das eBook auf Ihren tolino mit einer kostenlosen Software wie beispielsweise Adobe Digital Editions.
• Sony Reader & andere eBook Reader
Laden Sie das eBook direkt über den Reader-Shop herunter oder übertragen Sie das eBook mit der kostenlosen Software Sony READER FOR PC/Mac oder Adobe Digital Editions auf ein Standard-Lesegeräte mit epub- und Adobe DRM-Unterstützung.
• Tablets & Smartphones
Möchten Sie dieses eBook auf Ihrem Smartphone oder Tablet lesen, finden Sie hier unsere kostenlose Lese-App für iPhone/iPad und Android Smartphone/Tablets.
• PC & Mac
Lesen Sie das eBook direkt nach dem Herunterladen mit einer kostenlosen Lesesoftware, beispielsweise Adobe Digital Editions, Sony READER FOR PC/Mac oder direkt über Ihre eBook-Bibliothek in Ihrem Konto unter „Meine eBooks“ - „online lesen“.
Schalten Sie das eBook mit Ihrer persönlichen Adobe ID auf bis zu sechs Geräten gleichzeitig frei.
Bitte beachten Sie, dass die Kindle-Geräte das Format nicht unterstützen und dieses eBook somit nicht auf Kindle-Geräten lesbar ist.