Installieren Sie die genialokal App auf Ihrem Startbildschirm für einen schnellen Zugriff und eine komfortable Nutzung.
Tippen Sie einfach auf Teilen:
Und dann auf "Zum Home-Bildschirm [+]".
Bei genialokal.de kaufen Sie online bei Ihrer lokalen, inhabergeführten Buchhandlung!
Nanostructured silicon-germanium (SiGe) opens up the prospects of novel and enhanced electronic device performance, especially for semiconductor devices. Silicon-germanium (SiGe) nanostructures reviews the materials science of nanostructures and their properties and applications in different electronic devices.The introductory part one covers the structural properties of SiGe nanostructures, with a further chapter discussing electronic band structures of SiGe alloys. Part two concentrates on the formation of SiGe nanostructures, with chapters on different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition. This part also includes chapters covering strain engineering and modelling. Part three covers the material properties of SiGe nanostructures, including chapters on such topics as strain-induced defects, transport properties and microcavities and quantum cascade laser structures. In Part four, devices utilising SiGe alloys are discussed. Chapters cover ultra large scale integrated applications, MOSFETs and the use of SiGe in different types of transistors and optical devices.With its distinguished editors and team of international contributors, Silicon-germanium (SiGe) nanostructures is a standard reference for researchers focusing on semiconductor devices and materials in industry and academia, particularly those interested in nanostructures.- Reviews the materials science of nanostructures and their properties and applications in different electronic devices- Assesses the structural properties of SiGe nanostructures, discussing electronic band structures of SiGe alloys- Explores the formation of SiGe nanostructuresfeaturing different methods of crystal growth such as molecular beam epitaxy and chemical vapour deposition
Contributor contact detailsPrefacePart I: IntroductionChapter 1: Structural properties of silicon-germanium (SiGe) nanostructuresAbstract:1.1 Introduction1.2 Crystal structure1.3 Lattice parameters1.4 Phase diagram1.5 Critical thickness1.6 Structural characterization by X-ray diffraction1.7 Future trends1.8 AcknowledgementChapter 2: Electronic band structures of silicon-germanium (SiGe) alloysAbstract:2.1 Band structures2.2 Strain effects2.3 Effective mass2.4 ConclusionPart II: Formation of nanostructuresChapter 3: Understanding crystal growth mechanisms in silicon-germanium (SiGe) nanostructuresAbstract:3.1 Introduction3.2 Thermodynamics of crystal growth3.3 Fundamental growth processes3.4 Kinetics of epitaxial growth3.5 HeteroepitaxyChapter 4: Types of silicon-germanium (SiGe) bulk crystal growth methods and their applicationsAbstract:4.1 Introduction4.2 Growth methods4.3 Application of silicon-germanium (SiGe) bulk crystal to heteroepitaxy4.4 ConclusionChapter 5: Silicon-germanium (SiGe) crystal growth using molecular beam epitaxyAbstract:5.1 Introduction5.2 Techniques5.3 Nanostructure formation by molecular bean epitaxy (MBE)5.4 Future trendsChapter 6: Silicon-germanium (SiGe) crystal growth using chemical vapor depositionAbstract:6.1 Introduction6.2 Epitaxial growth techniques - chemical vapor deposition (CVD) (ultra high vacuum CVD (UHVCVD), low pressure CVD (LPCVD), atmospheric pressure CVD (APCVD), plasma enhanced CVD (PECVD))6.3 Silicon-germanium (SiGe) heteroepitaxy by chemical vapor deposition (CVD)6.4 Doping of silicon-germanium (SiGe)6.5 Conclusion and future trendsChapter 7: Strain engineering of silicon-germanium (SiGe) virtual substratesAbstract:7.1 Introduction7.2 Compositionally graded buffer7.3 Low-temperature buffer7.4 Ion-implantation buffer7.5 Other methods and future trendsChapter 8: Formation of silicon-germanium on insulator (SGOI) substratesAbstract:8.1 Introduction: demand for virtual substrate and (Si)Ge on insulator (SGOI)8.2 Formation of (Si)Ge on insulator (SGOI) by the Ge condensation method8.3 Extension toward Ge on insulator8.4 Conclusion8.5 AcknowledgmentChapter 9: Miscellaneous methods and materials for silicon-germanium (SiGe) based heterostructuresAbstract:9.1 Introduction9.2 Oriented growth of silicon-germanium (SiGe)on insulating films for thin film transistors and 3-D stacked devices9.3 Heteroepitaxial growth of ferromagnetic Heusler alloys for silicon-germanium (SiGe)-based spintronic devices9.4 ConclusionChapter 10: Modeling the evolution of germanium islands on silicon(001) thin filmsAbstract:10.1 A few considerations on epitaxial growth modeling10.2 Introduction to Stranski-Krastanow (SK) heteroepitaxy10.3 Onset of Stranski-Krastanow (SK) heteroepitaxy10.4 Beyond the Stranski-Krastranow (SK) onset: SiGe intermixing10.5 Beyond the Stranski-Krastanow (SK) onset: vertical and horizontal ordering for applications10.6 Future trends: ordering Ge islands on pit-patterned Si(001)Chapter 11: Strain engineering of silicon-germanium (SiGe) micro- and nanostructuresAbstract:11.1 Introduction11.2 Growth insights11.3 Island engineering11.4 Rolled-up nanotechnology11.5 Potential applications11.6 Sources of further information and advice11.7 AcknowledgmentsPart III: Material properties of SiGe nanostructuresChapter 12: Self-diffusion and dopant diffusion in germanium (Ge) and silicon-germanium (SiGe) alloysAbstract:12.1 Introduction12.2 Diffusion mechanism12.3 Self-diffusion in germanium (Ge)12.4 Self-diffusion in silicon-germanium (SiGe) alloys12.5 Silicon-germanium (Si-Ge) interdiffusion12.6 Dopant diffusion in germanium (Ge)12.7 Dopant diffusion in silicon-germanium (SiGe) alloys12.8 Dopant segregation12.9 Conclusion and future trendsChapter 13: Dislocations and other strain-induced defects in silicon-germanium (SiGe) nanostructuresAbstract:13.