Installieren Sie die genialokal App auf Ihrem Startbildschirm für einen schnellen Zugriff und eine komfortable Nutzung.
Tippen Sie einfach auf Teilen:
Und dann auf "Zum Home-Bildschirm [+]".
Bei genialokal.de kaufen Sie online bei Ihrer lokalen, inhabergeführten Buchhandlung!
Ihr gewünschter Artikel ist in 0 Buchhandlungen vorrätig - wählen Sie hier eine Buchhandlung in Ihrer Nähe aus:
Bachelorarbeit aus dem Jahr 2024 im Fachbereich Informatik - Künstliche Intelligenz, Note: 1,3, Hochschule für Technik Stuttgart (Fakultät Vermessung, Informatik und Mathematik), Sprache: Deutsch, Abstract: Die vorliegende Bachelorarbeit untersucht die Leistungsfähigkeit der "Stochastic Gradient Line Bayesian Optimization" (SGLBO) aus der Publikation von Tamiya und Yamasaki (2022), im Kontext der Parameteroptimierung für "Quantum Neural Networks" (QNN) und vergleicht diese mit der "Adaptive Moment Estimation" (Adam). Die Ergebnisse zeigen, dass beide Algorithmen in der Lage sind, QNNs zu trainieren. Dabei zeigt Adam vor allem Stärken in der rauschfreien Optimierung, während SGLBO signifikant bessere Ergebnisse in verrauschten Umgebungen erzielt. Damit konnten die Ergebnisse aus der Publikation von Tamiya und Yamasaki (2022) reproduziert werden.