Installieren Sie die genialokal App auf Ihrem Startbildschirm für einen schnellen Zugriff und eine komfortable Nutzung.
Tippen Sie einfach auf Teilen:
Und dann auf "Zum Home-Bildschirm [+]".
Bei genialokal.de kaufen Sie online bei Ihrer lokalen, inhabergeführten Buchhandlung!
Ihr gewünschter Artikel ist in 0 Buchhandlungen vorrätig - wählen Sie hier eine Buchhandlung in Ihrer Nähe aus:
Die Einführung vermittelt anhand vieler Anwendungsbeispiele die Grundlagen der Stochastik und geht dabei besonders auf die für die Informatik besonders wichtigen diskreten Modelle ein. Um auch die Brücke zur Numerik zu schlagen, werden z.B. exakte Konfidenzintervalle sehr ausführlich behandelt. Auch das immer wichtiger werdende Gebiet der Bioinformatik kommt nicht zu kurz: Beispiele (z.B. Hardy-Weinberg-Gesetz, medizinische Tests, Sequenzvergleiche) und Methoden (exponentielle Schranken, EM-Algorithmus) sorgen dafür, dass auch Informatiker mit Nebenfach Medizin und Biologie das Buch mit Gewinn lesen können. Hinweise zu weiterführender Literatur runden das Buch ab.
1 Einleitung.- 2 Laplace-Verteilungen und diskrete Modelle.- 2.1 Stichproben und Permutationen.- 2.2 Diskrete Wahrscheinlichkeitsräume.- 2.3 Übungsaufgaben.- 3 Bedingte Wahrscheinlichkeiten und stochastische Unabhängigkeit.- 3.1 Kolmogorovs Axiome für Wahrscheinlichkeiten.- 3.2 Bedingte Wahrscheinlichkeiten.- 3.3 Stochastische Unabhängigkeit.- 3.4 Das Hardy-Weinberg-Gesetz.- 3.5 Produkträume.- 3.6 Übungsaufgaben.- 4 Zufallsvariablen und spezielle Verteilungen.- 4.1 Stochastische Unabhängigkeit.- 4.2 Spezielle Verteilungen.- 4.3 Kodierungen von Permutationen.- 4.4 Faltungen.- 4.5 Die Laufzeit von 'QuickSort'.- 4.6 Übungsaufgaben.- 5 Statistische Anwendungen: Konfidenzbereiche.- 5.1 Konfidenzbereiche.- 5.2 Konfidenzschranken für Binomialparameter.- 5.3 Konfidenzschranken für hypergeometrische Verteilungen.- 5.4 Vergleich zweier Binomialparameter.- 5.5 Übungsaufgaben.- 6 Erwartungswerte und Standardabweichungen.- 6.1 Definition und Eigenschaften des Erwartungswertes.- 6.2 Die Markov-Ungleichung.- 6.3 Produkte von Zufallsvariablen.- 6.4 Varianzen und Standardabweichungen.- 6.5 Kovarianzen.- 6.6 Anwendungen.- 6.7 Das schwache Gesetz der großen Zahlen.- 6.8 Übungsaufgaben.- 7 Erzeugende Funktionen und Exponentialungleichungen.- 7.1 Erzeugende Funktionen.- 7.2 Momentenerzeugende Funktionen.- 7.3 Exponentialungleichungen.- 7.4 Die Hoeffding-Ungleichung.- 7.5 Übungsaufgaben.- 8 Informationstheorie.- 8.1 Fragestrategien und Kodes.- 8.2 Entropie.- 8.3 Optimale Kodierung nach der Huffman-Methode.- 8.4 Übungsaufgaben.- 9 Allgemeine Wahrscheinlichkeitsräume.- 9.1 Die Kolmogorovschen Axiome.- 9.2 Existenz und Eindeutigkeit von Maßen.- 9.3 Bernoullifolgen.- 9.4 Wahrscheinlichkeitsmaße auf R.- 9.5 Übungsaufgaben.- 10 Integrale und Erwartungswerte.- 10.1Lebesgue-Integrale.- 10.2 Erwartungswerte.- 10.3 Der Satz von Fubini.- 10.4 Die Transformationsformel für das Lebesguemaß.- 10.5 Starke Gesetze der großen Zahlen.- 10.6 Übungsaufgaben.- 11 Computersimulation von Zufallsvariablen.- 11.1 Monte-Carlo-Schätzer.- 11.2 Pseudozufallszahlen.- 11.3 Acceptance-Rejection-Verfahren.- 11.4 Übungsaufgaben.- 12 Markovketten.- 12.1 Definition, Beispiele und allgemeine Eigenschaften.- 12.2 Homogene Markovketten.- 12.3 Absorptionswahrscheinlichkeiten.- 12.4 Das Langzeitverhalten.- 12.5 Simulated Annealing.- 12.6 Übungsaufgaben.- 13 Approximation von Verteilungen.- 13.1 Die Poissonapproximation.- 13.2 Poissonprozesse.- 13.3 Normalapproximationen.- 13.4 Übungsaufgaben.- 14 Maximum-Likelihood-Schätzer und EM-Algorithmus.- 14.1 Maximum-Likelihood-Schätzer.- 14.2 Der Expectation-Maximization-Algorithmus.
E-Mail: ProductSafety@springernature.com