Installieren Sie die genialokal App auf Ihrem Startbildschirm für einen schnellen Zugriff und eine komfortable Nutzung.
Tippen Sie einfach auf Teilen:
Und dann auf "Zum Home-Bildschirm [+]".
Bei genialokal.de kaufen Sie online bei Ihrer lokalen, inhabergeführten Buchhandlung!
Ihr gewünschter Artikel ist in 0 Buchhandlungen vorrätig - wählen Sie hier eine Buchhandlung in Ihrer Nähe aus:
This book is designed to make spatio-temporal modeling and analysis understandable to students and researchers, mathematicians and statisticians and practitioners in the applied sciences. By avoiding hardcore math and calculus, this book aims to be a bridge that removes the statistical knowledge gap from among the applied scientists.
Sujit K. Sahu is a Professor of Statistics at the University of Southampton. He has co-authored more than 60 papers on Bayesian computation and modeling of spatio-temporal data. He has also contributed to writing specialist R packages for modeling and analysis of such data.
1. Examples of spatio-temporal data2. Jargon of spatial and spatio-temporal modeling3. Exploratory data analysis methods4. Bayesian inference methods5. Bayesian computation methods6. Bayesian modeling for point referenced spatial data7. Bayesian modeling for point referenced spatio-temporal data8. Practical examples of point referenced data modeling9. Bayesian forecasting for point referenced data10. Bayesian modeling for areal unit data11. Further examples of areal data modeling12. Gaussian processes for data science and other applicationsAppendix A. Statistical densities used in the bookAppendix B. Answers to selected exercises