Installieren Sie die genialokal App auf Ihrem Startbildschirm für einen schnellen Zugriff und eine komfortable Nutzung.
Tippen Sie einfach auf Teilen:
Und dann auf "Zum Home-Bildschirm [+]".
Bei genialokal.de kaufen Sie online bei Ihrer lokalen, inhabergeführten Buchhandlung!
Ihr gewünschter Artikel ist in 0 Buchhandlungen vorrätig - wählen Sie hier eine Buchhandlung in Ihrer Nähe aus:
The new edition of Biostatistics for Clinical and Public Health Research is the only introductory workbook to provide not only a concise overview of key statistical concepts but also step-by-step guidance on how to apply these through a range of software packages, including R, SAS, and Stata.
Melody S. Goodman is a professor in the Department of Biostatistics at New York University School of Global Public Health. She is a biostatistician with experience in study design, developing survey instruments, data collection, data management, and data analysis for public health and clinical research projects. She has taught introductory biostatistics for masters of public health and medical students for over 15 years at multiple institutions (Stony Brook University School of Medicine, Washington University in St. Louis School of Medicine, New York University School of Global Public Health).
Introduction. 1: Descriptive Statistics. Lab A1: Introduction to R/RStudio. Lab A2: Introduction to SAS. Lab A3: Introduction to Stata. 2: Probability. 3: Diagnostic Testing. 4: Discrete Probability Distributions. 5: Continuous Probability Distributions. Lab B: Probability Distributions. 6: Estimation. 7: One-Sample Hypothesis Testing. Lab C: One-Sample Hypothesis Testing Including Power and Sample Size. 8: Two-Sample Hypothesis Testing. 9: Nonparametric Hypothesis Testing. Lab D: Two-Sample Hypothesis Testing and Nonparametric Methods. 10: Hypothesis Testing for Categorical Data. 11: One-Way Analysis of Variance (ANOVA). 12: Correlation. 13: Linear Regression. 14: Logistic Regression. 15: Survival Analysis. Lab E: Data Analysis Project. 16: The Importance of Data Literacy and Data Ethics.